
IS
TO
CK
PH
O
TO

32	 BETTER SOFTWARE	 MAY/JUNE 2009	

	 www.StickyMinds.com	 MAY/JUNE 2009	 BETTER SOFTWARE 	 33

C
ongratulations, you’ve decided

to start writing automated tests

for your application. Maybe tests

are a new requirement for your

team, maybe you’ve been burned by bugs that

keep reappearing, or maybe you were just cu-

rious about the buzz surrounding automated

testing. However you got to this point, a

good suite of automated tests can make

your development life more productive

and peaceful.

If you are a developer, perhaps you’ve

read an introductory article on testing

with JUnit (or NUnit, Test::Unit, or your

programming language’s flavor of the

xUnit test framework), and you under-

stand the syntax and fundamentals of

writing tests. But going from test-driving

a stack data structure (a typical book ex-

ample) to testing your living, complex pro-

duction application can seem like a daunting

challenge. In this article, I’ll suggest what to

start testing in your application, how to get

started, and some problems you may encounter

along the way.

It’s important to note that writing automated

tests can be practiced in any software process or

methodology, whether it’s Scrum, waterfall, RUP, Ex-

treme Programming (XP), or your organization’s own

custom blend. While XP practitioners write their tests before

the production code, this practice can be difficult to start—and

not everyone prefers to work in this manner (though I’d encourage

everyone to give it a try before dismissing it). Test-last development—

testing after the production code is written—is a way that many teams start

and practice automated testing.

What Do I Test?
Like starting anything new, it can

be difficult to decide how and where to
begin adding tests. While sitting down
and writing tests for the first code you
see may feel productive, there are some
strategies to get more immediate value
out of your tests. When starting with no
existing tests, you want to get the most
value out of your time and effort. You
want to avoid writing tests for code that
never has broken and probably never
will break. Here are a few questions I
ask to discover some possible starting
points:

•	 Are there any existing or recently
fixed bugs?

•	 What features have you just fin-
ished?

•	 What are you planning to work
on next?

Are there any existing or recently
fixed bugs?

Tests that expose a bug are the most
immediately valuable tests. These dem-
onstrate a real fault in the system, pro-
vide feedback for when you have finished
fixing the problem (the test passes), and
act as an automated alarm if the defect
ever gets reintroduced.

If you have just found a bug, write
a test that reproduces the failure. Fix
the bug, rerun the test to see it pass,
and refactor the code to clean it up.
This rhythm is the Holy Grail of test-
driven development—the “Red-Green-
Refactor” cycle.

What do you do if you don’t have
any bugs (that you know about)? Pick
a bug that you just fixed or one that was
a real zinger. Write a test for that bug—
but here’s the catch—roll back the pro-
duction code to a point where the bug
still existed. Now run the test to confirm
the test exposes the bug, then restore the
production code to the current working
state. This step is critical—you want to
make sure you write a test that actually
catches the bug. When you have code
that already works, it’s easy to write a
test that never actually fails, even if the
bug gets reintroduced.

What features have you just
finished?

When do you best remember the code

you’ve written? Right after you write it!
Use that mental clarity to write tests that
exercise core aspects of the feature, using
the tests to document how things are
supposed to work. Now is the perfect
opportunity to write some executable
documentation that demonstrates any
unusual corner cases of the particular
business rule you’ve just implemented.
Then when you need to modify it in six
months, you’ve left some breadcrumbs
to remind you of all the particular nu-
ances.

One other practical reason to work
on code you just finished is that team
members sometimes get grumpy when
people change their code or even insin-
uate that it might be wrong and require
testing (perish the thought!). If you’re on
a team like this, practice introspection
and test your own code; once you do it
enough, your teammates might take no-
tice.

Another good reason to test new
code is that it may be easier to get the
business sponsors to buy-in on the ef-
fort. If you tell a business user that you
want to spend some time defect-proofing
a feature, he’ll probably like the idea. If
you tell him you want to work on some
other feature that’s not being worked on
anymore, he’ll probably balk at the idea.
Instead, focus on the current features
being developed.

What are you planning to work on
next?

When you add new features to an ap-
plication, there is some risk of breaking
existing functionality. This is a fact
of life, but tests can help. There are a
couple of options to consider: add re-
gression tests to prevent introducing
new bug, and to understand how some
existing code works.

If you’re about to start a new piece
of functionality, use your current knowl-
edge of the system to figure out what
might break and write tests to cover
those cases. Once you complete your
task, use these tests to ensure you haven’t
broken anything. This is especially true
if you’re about to start refactoring code.
Make sure you write tests to ensure you
don’t accidentally change the code’s be-
havior.

But what if you didn’t write the code

in the first place and don’t really know
what it’s doing? Write tests to demon-
strate and discover the code’s behavior.
In his book Working Effectively with
Legacy Code, Michael Feathers calls
these characterization tests. The theory
is that if a system is working, the cor-
rect behavior doesn’t come from some
requirements specification document; it
comes from whatever the code is doing
right then. Characterization tests help
ensure that the code’s behavior stays
consistent after you’ve made your new
changes.

Once you’ve figured out what to
test, you need to think about how to get
started.

Getting Started
High-level and low-level tests

For this article, I’ll use the term “high
level” to describe tests that exercise top-
level classes (e.g., Web framework ac-
tions) or public APIs, and “low level”
for tests that utilize the individual ob-
jects or components (e.g., a sales tax cal-
culator) of your system in isolation. The
effectiveness of these test types can be
measured in terms of depth—how many
different components are exercised—
and breadth—the number of different
paths or data combinations executed by
the test.

High-level tests provide deep depth
and narrow breadth: deep depth because
they exercise many layers of the system
together, but narrow breadth because
they normally exercise just a few paths
through the code. But this depth comes
at a cost. You need to manage a lot of
dependencies and setup before each test.
Furthermore, high-level test failures may
be hard to diagnose—you might get
feedback that a record didn’t appear in
the database, but you won’t easily know
if it was because of bad input data, a da-
tabase problem, or some logic error in
any of the collaborating objects.

If you have no tests at all, high-level
tests that use a real database exercise a
lot of the system and can provide confi-
dence that the system is wired together
correctly. These tests usually start just
below the user interface by accessing
the Web framework actions or services
directly. If at all possible, avoid testing
directly through the GUI since the user

34	 BETTER SOFTWARE	 MAY/JUNE 2009	 www.StickyMinds.com

	 www.StickyMinds.com	 MAY/JUNE 2009	 BETTER SOFTWARE 	 35

isn’t always the right strategy. Writing
low-level tests offers quick rewards, but
it can be exhausting to climb level after
level of your application. Sometimes it’s
a good strategy to start with a high-level
test to ensure the feature is working end
to end, then flesh out the details with
low-level tests as necessary.

I faced a similar scenario with a de-
veloper. We started writing tests for his
new feature at the lowest level of the ap-
plication. We wrote tests, moving up one
layer at a time. After a morning of doing
this, we were both exhausted and hadn’t
yet written a high-level test to verify
that the feature worked! In retrospect, it
would have been better to start with a
high-level test; that way we would have
had time to focus on other scenarios to

test or refactor the code while the task
was still fresh in our minds.

There’s a special kind of high-level
test I briefly mentioned earlier that
controls the application through the
user interface. For a Web application,
this means automating a Web browser
with a tool like Selenium or Watir (see
the StickyNotes for links to tools). For
a desktop application, this means using
libraries like Abbot or White. If you’re
just learning how to write tests, starting
with automated GUI tests is almost al-
ways a mistake. They’re difficult to re-
produce because it’s hard to set up the
data, they’re slow to execute, and they’re
the most brittle and costly tests. How-
ever, these tools are great for smoke tests
used to ensure your application installs

interface typically changes frequently
and leads to a lot of incorrect tests and
test maintenance.

Low-level tests are the opposite:
shallow depth and wide breadth. Low-
level tests are easier to set up with a va-
riety of scenarios since you are working
with objects in isolation and can more di-
rectly specify desired test setup behavior,
such as creating test-only objects that al-
ways throw exceptions. This makes low-
level tests better for isolating behavior
and diagnosing failures. However, these
tests typically exercise one layer of your
application (e.g., business objects or ser-
vices) and provide shallow depth.

Ultimately, a well-tested system has
a combination of both test types: high
level to ensure the system is wired cor-
rectly and low level to ensure all the
business cases are covered.

For most developers, focused
low-level tests are the best way to
get started. They’re quick to write
and run, which means they’re more
likely to be run frequently, and that
means more good feedback and a
lot of little successes. Taken on
their own, these little tests may
seem trivial, but put them all
together and you’ve got the be-
ginnings of a regression suite.
Build experience writing tests
while learning about the prop-
erties of good tests. The Prag-
matic Programmers publish
an excellent book—Pragmatic
Unit Testing—with editions for
Java/JUnit and C#/NUnit, which does a
great job teaching the fundamentals.

After you’re comfortable writing
low-level tests, move on to high-level
tests. If you use a database or external
systems as part of these tests, you’ll need
to ensure these are set up in a repeat-
able fashion before every test. This may
require work other than coding, such as
creating your own database schema that
you can change as part of your tests, fig-
uring out how to start up your own local
copy of a dependent server, or creating
mock versions of databases or servers.

Once you’ve gained experience
writing both high-level and low-level
tests, you’ll learn that starting at the
lowest level of your application and
moving your way up to high-level tests

public void testSave() {

 action = // ... setup code omitted

 action.setFullName(“Nigel Tufnel”);

 action.execute();

}

Listing 1: A bad test

public void testSaveShouldCreatePerson() {

 action = // ... setup code omitted

 action.setFullName(“Nigel Tufnel”);

 String result = action.execute();

 assertEquals(SUCCESS, result);

 assertPersonCreatedWithName(“Nigel Tufnel”);

}

Listing 2: A better test

and operates correctly end to end. They
are not a replacement for a curious—and
perhaps devious—tester who can use the
application in ways that were never an-
ticipated. For example, it’s easy to write
a test that fills in invalid form data in a
Web page, but a tester might try to click
the back button, open a separate copy of
the page in another window, and access
your application in two windows simul-
taneously. Instead, start out by auto-
mating the simple, repeatable cases just
beneath the GUI layer.

Common Problems
Tests aren’t catching regression
bugs!

Good tests catch bugs; bad tests let
them slip by undetected. To ensure your

tests are good, make some devious
changes in your production code and
ensure the tests fail in the way you
expect. Invert some boolean condi-
tional tests, do one less iteration in a
loop, swap some assignment opera-
tors with equality checks (= for ==),
don’t actually save a record to the

database, or include whatever
sort of mistake might make
sense. Do your tests catch the
error? If not, evaluate whether
you’re missing a test or if one
of the tests is missing some key
detail.

For example, imagine you’re
writing a test for a customer
management Web application.
Listing 1 shows an example

of a bad test for a “Create a Person”
action—the test never checks to see if the
person was actually created. In fact, this
test will fail only if the code throws an
exception. Listing 2 shows a better test,
which verifies the action’s result code
and ensures that a person was created.
Note also that we’ve created a custom
assertion method to make the test easier
to read. This method could check a real
database or a faster in-memory version
specifically used for tests.

I can’t change the database since it
affects the rest of the company

If you are writing tests that use the
database, it’s much easier to have your
own private instance that you can set up
and tear down at will. This also means

36	 BETTER SOFTWARE	 MAY/JUNE 2009	 www.StickyMinds.com

that the build machine should have its
own instance that it can use, just like
each developer. If it’s hard to get the
database schema set up reliably in an
automated fashion, consider versioning
your database changes. Add a version
table to keep track of the current schema
version, and then create all your changes
in incremental SQL scripts that update
the schema version after they run. This
allows you automatically to re-create
or update any database, whether it’s
the local copy on your workstation or
in production. Ruby on Rails uses this
technique, as do tools like dbdeploy and
migratordotnet.

If you can’t get your own instance of
the database, there are some techniques
you can use to help isolate yourself from
the rest of the company (but fight tooth
and nail for your own private instance
or schema, otherwise your build might
occasionally fail because someone else
botched the schema). In his book xUnit
Test Patterns, Gerard Meszaros de-
scribes several options for using reusable
database fixtures. The premise is that
your tests either insert unique data on
every run or depend on some data that
is always expected to be present. One
pattern starts a transaction at the begin-
ning of the test, exercises the system,
and then rolls back at the end of the test,
preventing any changes from persisting
and altering the test database.

How can my team measure its
progress?

Code coverage is a measure of how
much production code your automated

Figure 1: Sample code coverage annotated by EclEmma

tests exercise, stated as a percentage (for
example, “65 percent of my production
code is exercised by tests”). While code
coverage alone is not a useful metric to
determine how safe your application is
from accidental regressions (there might
be tests, but they might be bad tests), it
is a great motivator and teaching aid.
Since you’re starting out, your coverage
number will be low, so set a goal to al-
ways have code coverage increase rather
than targeting an arbitrary percentage.

Code coverage tools like EclEmma
can display production code coverage
in your IDE by coloring tested lines of
code green and untested lines red. There
is no underestimating the “wow” factor
of seeing code you’ve written turn green
or red, and it provides great immediate
feedback. See Figure 1 for an example.

It’s hard to test my objects in
isolation

One of the most difficult aspects of
starting testing can be getting your code
into a test harness—a repeatable con-
figuration of tests with several different
scenarios. If your objects under test
talk directly to other difficult-to-control
components, use dependency injection
(see the StickyNotes for a link) to pass
in your own test-specific versions. For
example, to avoid sending emails to
your operations staff every time you run
a unit test that verifies a system outage
procedure, pass in a fake mail server
connection and ensure that a message
gets sent via the fake server. Your test
will be much more repeatable, and you
won’t get nasty letters from operations.

By writing more tests, you’ll start to
learn how to write production code that
is easier to test in isolation. However, it
won’t happen overnight, and it probably
will mean making some changes to your
existing code to expose testing hooks.
Think of these as small steps on the way
to a better design. If you have a class
that is hard to test, try making a testing-
specific subclass that overrides the prob-
lematic behavior. It may feel strange to
change your production code in awk-
ward ways just to make testing easier,
but if you can use it to write automated
tests that provide a safety net, you may
be able to change your design to remove
that test-specific class entirely. Again, see
Feathers’s excellent Working Effectively
with Legacy Code for a wealth of tech-
niques for wrangling code into a more
testable state.

One Step at a Time...
Just as writing clean code takes dis-

cipline, so, too, does writing good auto-
mated tests. It’s a rewarding practice, but
be prepared: It’s going to be difficult at
first. Start out slow—small, focused low-
level tests. Set realistic goals for yourself,
and celebrate your successes, such as
your first test that runs in the automated
build, the first time a test catches a re-
gression bug, or the first test that uses
the database. Along the way, verify that
your tests are really delivering value—
break the production code and ensure a
test catches the error.

And, when you become comfortable
with writing tests last, I recommend at
least trying to write your tests before the
production code. I personally find the
process of working in small steps with
frequent feedback a rewarding and ener-
gizing experience. But, some developers
love it and some hate it, so decide for
yourself. Rather than debating the merits
of Test First versus Test Last, let’s all cel-
ebrate that a good test suite provides us
confidence that our code is doing what
we expect, and that means we write
code more confidently and sleep easier
at night.

That sounds like a good life to me.
{end}

