
November/December 2010	 $9.95	 www.StickyMinds.com

The Print Companion to

	 TESTING GONE WILD
Regulated software

unleashed

THE OPTIMIST'S DILEMMA
Looking on the

(not-so-bright) side

26	 BETTER SOFTWARE	 NOVEMBER/DECEMBER 2010	 www.StickyMinds.com

VE
ER

 IM
A

G
ES

S
cala is a programming language designed
to be concise, safe, and compatible. Programs
written in Scala run on the Java Virtual Machine
and can reuse existing Java libraries and code.

Scala is already used in production for business-critical sys-
tems; it powers several services at Twitter [1] including mes-
sage queues, the streaming API, and people search function.
Foursquare’s main and mobile websites are written in Scala
[2]. In addition, Scala is used in projects at companies such
as LinkedIn, Novell, Sony Pictures Imageworks, and Siemens.
Martin Odersky, Scala’s creator, has a strong language design
background: He wrote Sun’s Java 1.3 compiler and cocreated
Generics for Java.

Scala refines the object-oriented features of Java and bor-
rows functional programming techniques from languages in-
cluding ML and Haskell. This yields code sizes that are typi-
cally reduced by a factor of two to three when compared to
equivalent Java code [3] and draws aesthetic comparisons to
other dynamic languages [4] like Ruby. But Scala code is fast—
with performance on par with Java [5] and faster than Ruby.

One of Scala’s key strengths is its excellent compatibility
with Java. Scala’s compiler compiles Scala source files to Java
class files (bytecode), and its runtime libraries are straight Java
JARs. Scala code can call any existing Java code you have, so
you can reuse all that Java code you’ve written. This means
you can write code in Scala and run it anywhere you would
run Java code—from desktop Swing applications to web ap-
plications powered by servers such as Jetty or Glassfish.

Functional Programming
The functional programming style is an alternative to

the imperative style often used in object-oriented languages.
Functional programming languages model their computations
in terms of side effect-free functions, like mathematical func-
tions—the output of a function depends only upon its inputs.
If you call a function with some input value, it will yield the
same output no matter how many times you call the function.
Compare this to an object-oriented language, where calling a
method on an object may give you a different result on every
invocation if an object’s state may change (for example, a GUI
window object’s getPosition() method will return different
values as the window is moved around the screen).

Functional languages are written in terms of immutable
values; once a variable is assigned, it can never change. Think
of final variables in Java—those are immutable values. Here’s
a sample assignment in Scala:

val theAnswer = 42

To declare an immutable value in Scala, you use the val
keyword. Any attempt to reassign the value will result in a
compiler error.

Furthermore, functions are first-class values just like num-
bers and strings; they can be assigned to variables and passed
as arguments to functions. Here is how to find the even num-
bers between one and eight:

val numbers = List(1, 2, 3, 4, 5, 6, 7, 8)
numbers.filter { x => (x % 2) == 0 }

// Result is List(2, 4, 6, 8)

This code creates a list containing the values one through
eight and assigns it to the variable “numbers.” The “filter”
function on List is invoked, which evaluates the list and re-
turns a new list containing only the items for which the speci-
fied function evaluates to true. In this case, we specify a func-
tion (between the curly brackets) that takes a variable “x”
and returns a Boolean indicating if x modulo 2 is zero (an-
other way of asking “Is x even?”)

Functional programs can be simpler to understand than
programs with mutable state, since a function’s result de-
pends only upon its inputs. If you’ve tried to understand how
a method on an object works when the result depends on
what happened to the object before the call, you’ve found a
problem that depends upon mutable state.

This simplicity is helpful when applied to multithreaded
concurrent programming. In Java, multithreaded programs
are written using memory locks and synchronization, a tech-
nique that is extremely easy to get wrong and that can lead
to race conditions requiring hair-pulling debugging sessions.
Immutable state makes concurrent processing much simpler
since you avoid many concurrency problems altogether (see
the book Java Concurrency in Practice [6]).

Of course, programs often need mutable state at some
point, and Scala supports this programming model as well.
Scala enables you to design programs that have mutable, en-
capsulated state in objects and rely on the functional parts of
the language for your computations and parallel processing.

Scala—a Better Java
Scala is also an object-oriented language and improves

upon many features of Java. In Scala, everything is an ob-
ject—even numbers, characters, and Booleans—which makes
for simpler code with fewer special cases. (Note the compiler
replaces these objects with primitives, which gives you the
best of both worlds: objects for simpler code, yet primitives
for faster performance.) Scala has a powerful type system that
enables type-safe code in many cases where Java would have
required casting. And just like Java, Scala will catch type mis-
match errors at compile time.

Scala code is less verbose than Java. Consider the code
in Java to create a map of some HTTP result codes to their
status messages:

// Java
Map<Int, String> statusMsgs =

new HashMap<Int, String>();
myMap.put(200, “OK”);
myMap.put(404, “Not Found”);

In Scala, it’s simply:

// Scala
val statusMsgs = Map(200 -> "OK",

404 -> "Not Found")

	 www.StickyMinds.com	 NOVEMBER/DECEMBER 2010	 BETTER SOFTWARE 	 27

28	 BETTER SOFTWARE	 NOVEMBER/DECEMBER 2010	 www.StickyMinds.com

While Java requires us to specify the type of the map’s keys
and values on both the left and right sides of the expression,
Scala looks at the creation on the right side and determines
the variable’s type. This is known as type inference, and it
means that many type declarations can be omitted, which re-
duces the amount of code and clutter per line. Additionally,
note how Scala lets you initialize the map’s contents in one
line, which is a nice touch. In Scala, Map is a library class like
Java’s HashMap.

Another feature that enhances Scala’s object-oriented
power is support for traits. Traits are similar to Java inter-
faces, which define a set of method signatures that a class will
implement. However, traits may also contain method imple-
mentations, which is not possible with Java interfaces. And
like Java interfaces, classes may implement many traits. Mul-
tiple traits may be stacked together in one class to assemble
rich behavior with minimal code, but Java is limited to ex-
tending at most one base class to reuse any default behavior
and requires that the programmer implement the remainder
of the interfaces.

For example, the Scala library provides the Ordered trait,
which is used to compare objects using semantics like greater
than or less than. If a class implements the Ordered trait, the
implementer must define how objects are compared, just like
Java’s Comparable interface. However, the Ordered trait pro-
vides default implementations of the methods >, >=, <, and
<=, which the implementing class now gains “for free.” (Note
that Scala methods may use symbols in their names, unlike
Java.)

Why Learn Scala Now?
Scala is gaining momentum. The availability of books is a

good indicator of market interest in the language. Presenta-
tions on Scala are becoming frequent at conferences. In April,
Scala passed 1,000 questions available on the popular ques-
tion site Stack Overflow.

And improvements are in the works. As of this writing,
the latest stable version of Scala is 2.8.0, released in July
2010. Version 2.8 offers several improvements including: an
improved collections library; support for nested Java annota-
tions, which is especially useful if you want to use annotations
for Java Persistence Applications API; new language features,
including named and default function arguments; and hooks
added to the compiler to make it easier to build Scala IDE
plug-ins, which means better tool support.

The Good and the Bad
Scala is an advanced language, but it’s not without weak-

nesses. There have been some annoying problems with point
releases of Scala that require you to recompile your code and
use libraries recompiled with the latest version. However, the
development team has stated that it will be focusing on binary
compatible releases starting with version 2.8, which may help.
Scala is a flexible, powerful language, which means that not
only does it enable you to create beautiful, sophisticated code
but it also won’t prevent you from creating a snarled, unread-
able mess.

Scala is developed at a university—not funded com-
mercially by a big company like Java and Sun/Oracle—so
its resources are more limited. There have been occasional
compiler bugs, and the API documentation can be a bit thin
compared to its Java counterpart.

That said, the Scala community is friendly and helpful,
whether it’s the active Scala mailing lists [7] or an online IRC
chat channel. In fact, Scala’s creator, Martin Odersky, actively
participates in the mailing list, which reflects the close-knit
nature of the community.

How Can I Get Started?
Download Scala from the Scala website at (www.scala-

lang.org.) Once you have installed Scala, you can get an in-
teractive command prompt (also known as a read-eval-print
loop or REPL) by typing “scala” at your command prompt.
Several books about Scala are now available, plus many blogs
on the subject (see the StickyNotes for links).

An IDE can help when learning a new language, and Scala
has plug-ins for all the major IDEs (Eclipse, NetBeans, and
IDEA). These plug-ins are still in their early development
phases so, while you can expect syntax highlighting and some
code completion, there aren’t many refactoring features, and
you can expect to find some problems such as the editor not
marking all errors in the code (though the compiler will catch
them).

One useful way to start practicing Scala is to write tests
in Scala for your existing Java code. You can write tests just
as you would in Java using libraries like JUnit or TestNG but
in Scala’s succinct syntax. Or to try out some of the more ex-
pressive features of Scala, you could use a Scala testing library
like ScalaTest [8] or Specs [9].

Let me suggest one technique to avoid: Don’t try to learn
Scala by first learning Lift, a popular Scala web application
framework. Lift takes a unique approach to web applications,
which can be quite daunting to understand if you’re new to
Scala or functional programming. As an alternative starter
project, consider the “99 Problems in Scala” [10] web page
that features several exercises that demonstrate the functional
programming style. {end}

dan@danielwellman.com

For more on the following topics go to
www.StickyMinds.com/bettersoftware.
n	 References
n	 Further reading

