
26 BETTER SOFTWARE SEPTEMBER/OCTOBER 2011 www.StickyMinds.com

W
iring the 783rd Spring Bean.
Creating	 the	 2,162nd	 getter-and-
setter	JavaBean	pair.	Using	the	col-
lection utility class to filter a list
and losing count of all the curly
brackets, angle brackets, and pa-

rentheses. Some days, life on a long-lived Java project can be
repetitive and tiresome. This is because some concepts in Java
require a lot of code and syntax to express, earning the lan-
guage a reputation as being verbose.

The good news is that in 2011 there are several languages
that run on the Java Virtual Machine (JVM), work with ex-
isting Java libraries, and have a successful history of deploy-
ment in production. This means these languages are stable
enough for businesses to trust them for important systems,
just like Java. Some of the most widely used alternative
JVM languages are Groovy, Scala, JRuby, and Clojure. Each
of these languages has commercial support options and a
growing community of talented developers, which means you
won’t be alone if you pick a language and need help. Com-
panies such as Akamai, Foursquare, JBoss, LinkedIn, Netflix,

SAP, and Twitter are using these languages.
But choosing another language isn’t just about finding

some variety in your daily work. Some languages let you ex-
press certain concepts with less code than Java requires. For
example, all the alternative languages listed in this article offer
closures and functions as first-class objects. These require far
less code than Java’s equivalent, anonymous inner classes.
Other languages offer radically different approaches to prob-
lems like concurrency. Scala and Clojure provide programming
models using actors or software transactional memory that can
be simpler to reason about for some use cases than typical Java
shared-state multithreaded code. For example, to maintain a
variable that may be accessed and changed by several different
threads, a safe Java solution requires a careful analysis and
synchronization strategy to avoid deadlocks or logic errors.
However, with a software transactional memory, programmers
access and modify variables inside atomic transactions (similar
to how databases are modified) and let the transaction man-
ager handle the complexities of concurrent access.

Here are some stories about how developers have inte-
grated alternative JVM languages in their Java projects.

IS
TO

CK
PH

O
TO

 www.StickyMinds.com SEPTEMBER/OCTOBER 2011 BETTER SOFTWARE 27

Groovy
Groovy is a dynamic language that offers a gentle transi-

tion from Java. Most Java code is valid Groovy code, which
means a Java programmer can ease his way into the more
dynamic features of the language. Runtime metaprogram-
ming, or writing code that can write code (imagine an object
representing a database record that can connect to the data-
base at runtime, inspect its target table schema, then generate
methods to access each column), is one of the most powerful
dynamic features of Groovy, yet it cannot be emulated in
Java—all Java methods must exist at compile time. The pop-
ular web application framework Grails borrows much of the
convention-over-configuration philosophy (designing libraries
by preferring intuitive, common defaults versus extensive ex-
plicit configuration files) from Ruby on Rails, yet is built on
established Java components like Spring and Hibernate.

Moss Collum, a developer at Cyrus Innovation, was
working with his team on a five-year-old Java project. The
team had started to feel frustration at how much code it took
to express certain concepts in Java, especially for manipulating
collections of objects (for example, finding the largest item

The Java Virtual Machine

The Java Virtual Machine (JVM) is the runtime platform

designed for applications written in the Java language.

The JVM has been ported to several operating systems

and hardware devices. It also includes a mature

garbage collector and just-in-time compiler that boosts

runtime performance. The wide deployment and

runtime optimizations of the JVM make it an appealing

target for alternative languages beyond Java.

28 BETTER SOFTWARE SEPTEMBER/OCTOBER 2011 www.StickyMinds.com

code for the tests than in the project, so ‘adding Scala’ even-
tually transitioned to ‘replacing Java code with Scala.’ We
started running Scala in production a month after starting to
use it for testing, but migrating the full codebase was a longer
process; we would basically port code from Java to Scala as
the opportunity arose in the refactoring process. That code-
base is still in production use, continues to be developed, and
handles tens of millions of dollars in transactions a year.”

JRuby
JRuby is an implementation of the Ruby language on the

JVM. Ruby’s popularity exploded with the Ruby on Rails
web framework, known for its high productivity. JRuby can
run Ruby on Rails applications in an existing Java infrastruc-
ture.

Najati Imam was working for Cyrus Innovation at a large
financial	services	client	with	an	investment	in	Java	and	Unix	
infrastructure. When the team needed to add a feature to a
legacy Perl CGI script, they realized they could rewrite the
application faster and make it easier to change in Ruby on
Rails than they could by modifying the Perl code. But getting
a Ruby production environment approved would have taken
several months.

“We picked JRuby so that we could run Ruby on Rails
in a Java application server,” said Imam. “We demonstrated
that JRuby was a well-trusted, open source Java library like
so many others the client was already using.”

Their investment paid off; the team was able to deliver
new features on time and at a pace that far exceeded the cli-
ent’s expectations.

“JRuby ended up being a Trojan horse that allowed us to
sneak adaptive, rapid feature development in to the enter-
prise.”

Sometimes, combining an alternative language with
Java can yield something unique, pulling together the best
parts of each. Bob McWhirter of JBoss is the founder of the
TorqueBox project, which lets developers write JRuby appli-
cations using frameworks like Rails, Sinatra, and Rack that
are served on the JBoss Application Server. This means de-
velopers get the flexibility and conciseness of Ruby with the
high-performance messaging, asynchronous task processing,
and scheduling facilities of a robust Java application server.

“I fell in love with Ruby,” said McWhirter, “and thus

in a set or transforming a list of objects by applying a func-
tion to each value.) They experimented by starting to write
new controllers and model objects in Groovy. “Groovy’s very
Java-like syntax was helpful with the large existing codebase
as it minimized the cost of context switching between Java
and Groovy code,” said Collum. “It also meant that porting
Java to Groovy was dead simple; since most Java is also valid
Groovy, we got into a rhythm of moving the Java code into a
Groovy file and then removing the excess Java noise. Groovy’s
closures, easy code reflection, and concision addressed our
biggest Java complaints. We’ve found several gotchas and a
few bugs, mainly in IDE support and Java interoperability,
but even so the gains are so great that we wouldn’t go back
to Java.”

Scala
Scala offers a fusion of object-oriented and functional lan-

guage programming models. This means that in Scala, pro-
grams can be composed in terms of both objects (the bread
and butter of Java programs) and functions (something that
can only be simulated rather verbosely in Java using anony-
mous inner classes). Scala is the only statically typed alterna-
tive language mentioned in this article, but it offers flexible
syntax and type inference that can give Scala programs the
feel of a dynamic language.
Using	a	new	language	for	implementing	tests	is	one	of	the	

most common ways to introduce a new language into a Java
project. Kris Nuttycombe, cofounder of ReportGrid.com, got
started with Scala at a previous job by writing tests for a Java
application.

“I picked Scala because my code had been moving towards
a functional style for a long time, and a stint with Ruby made
me want to use lambdas (anonymous functions),” Nuttycombe
said. “I started using it just for testing, but I was writing better

Functions as First-class Objects, Closures, and
Lambdas

In Java, objects can be passed as arguments to method

calls, assigned to variables, and returned as a result of

a method call. This is not possible with functions. That

is, functions are not first-class objects in Java.

A closure is a function that may refer to the variables

that were in scope when the function was created.

Lambdas are functions without a name—that is,

they are anonymous. These language features enable

creating flexible, reusable control structures and

succinct libraries.

Concision and Reflection

Java tends to be verbose for certain operations (see the

sidebar on anonymous inner classes). Other operations

like reflection, or inspecting and invoking code at

runtime, also require a fair amount of code. The

alternative languages listed in this article have simpler

reflection features, requiring just one line of code

where several would be required in Java.

needed some way to tie that back in to the Java-centric com-
pany for which I worked. The JRuby interpreter had really
been doing well, and I figured JBoss had a rather large bag
of enterprise-grade technology. Mix the two, and you have
TorqueBox.”

Clojure
Clojure is a dialect of Lisp, and unlike the other languages

listed here, is not object-oriented. It features a radically dif-
ferent approach to managing program state; everything is
immutable (unmodifiable after initialization) by default, and
any changes must be coordinated through Clojure’s software
transactional memory or other concurrency libraries.

Dan Chamberlain of Chamberlain Consulting was
working with a team building a new feature that required
implementing computationally expensive, recursive search al-
gorithms. Due to the size of the data set and the performance
requirements, the searches needed to be run in parallel. When
the team realized just how complex and how much code
would be needed to implement these searches in parallel in
Java, they started looking for implementation alternatives.
Chamberlain’s team chose to build this feature in Clojure.

“It really came down to immutability, recursion, and par-
allelism,”	 said	 Chamberlain.	 “You	 can	 do	 these	 things	 in	
Java, but they’re dead simple in Clojure.”

“Things didn’t always go so smoothly,” continued Cham-
berlain. “The learning curve was pretty steep since we didn’t
have a background in a Lisp programming language. There
have also been some issues with some of the tools and features
of the language that have made us change course a couple of
times. But, overall, it has been a pleasant experience.”

Growing Beyond Java
The JVM has become a great platform for trying out new

languages. It offers a diverse collection of alternatives, each
providing a unique opportunity to learn something new. And
by using languages that run on the JVM, you get the benefits
of experimentation in addition to being able to use these lan-
guages in your existing Java projects.

Perhaps one of the greatest benefits of learning a new
language is in self-improvement. Andrew Hunt and David
Thomas write in The Pragmatic Programmer, “Learn at least
one new language every year. Different languages solve the
same problems in different ways. By learning several different
approaches, you can help broaden your thinking and avoid
getting stuck in a rut.” {end}

dan@danielwellman.com

Java’s Anonymous Inner Classes, Collections, and
Concision
Java does not provide first-class functions or lambdas.
Instead, they must be simulated using anonymous inner
classes, which can be verbose.

Imagine you had a list of numbers and wanted the list
of only those numbers that were less than five. This is
how you might write the code to filter that list in Java:

Collection<Integer> filtered =

 Collections2.filter(numbers,

 new Predicate<Integer>() {

 public boolean apply(Integer input) {

 return input < 5;

 }

 });

Note that the Predicate class is being used to simulate
a function that takes one argument and returns true
or false. The Collections2 class is a utility class and is
required since the original Java collections libraries did
not include support for operations involving predicates.
And here’s how the same code would look in Scala,
which includes lambdas and a library of lists and
collections that use lambdas:

numbers.filter { x => x < 5 }

This defines an anonymous function that takes a
parameter x and returns the result of the expression
x < 5. Note also that the Scala version does not need
to specify the types of the function arguments; the
Scala compiler can infer them using a process known
as type inference. Scala, like Java, is a statically
typed language, which means that argument types are
checked at compile time.

Here is a similar implementation in Ruby, a dynamic
language:

numbers.select { |x| x < 5 }

Note that in the Ruby version, the types are also
omitted. This is because Ruby is a dynamically typed
language, where the parameter and variable types are
not declared in the source code. Groovy and Clojure are
also dynamically typed languages and share the same
concision.

For more on the following topic go to
www.StickyMinds.com/bettersoftware or
scan the QR code below.
n	 Supplemental materials

 www.StickyMinds.com SEPTEMBER/OCTOBER 2011 BETTER SOFTWARE 29

